

The provincial Sepsis Clinical Expert Working Group developed the BC Emergency Department Adult Sepsis Guidelines, taking into account the most up-to-date literature (references below) and expert opinion. This guidance is for adult septic/septic shock patients. If COVID-19 is presumed etiology, please refer to <u>COVID-19</u> <u>Therapeutics Committee Guidance</u>.

For more information about the guidelines and to join the BC Sepsis Network, visit <u>healthqualitybc.ca/sepsis</u>.

GUIDELINES

All patients with two out of four SIRS (heart rate greater than 90, respiratory rate greater than 20, temperature greater or equal to 38° C or less than 36° C, altered mental state) and suspected infection and one of the following risk factors should be considered at risk of sepsis:

- o Looks unwell
- Age greater than 65 years
- o Recent surgery
- o Immunocompromised (AIDS, chemotherapy, neutropenia, asplenia, transplant, chronic steroids)
- Chronic illness (diabetes, renal failure, hepatic failure, cancer, alcoholism, IV drug use)

All patients with two out of four SIRS and suspected infection (with above risk factor):

- Venous lactate measurement within 3 hours of presentation to triage
- o If initial lactate is greater than 2 mmol/L, repeat venous lactate measurement in next 2-4 hours

For adults in SHOCK (SBP less than 90 mmHg or MAP less than 65 mmHg) with POSSIBLE infectious cause (septic shock) or a HIGH likelihood of sepsis:

- o Blood culture before IV antibiotics
- Broad spectrum IV antibiotics within **1 hour**
- Selection of broad-spectrum antibiotics, including MRSA, MDRO and fungal coverage, should be based on local antibiograms and clinical indication (see SSCG 2021)
- Empiric antimicrobials should be discontinued if an alternative cause of illness is demonstrated or strongly suspected

For adults NOT in SHOCK (SBP less than 90 mmHg or MAP less than 65 mmHg) with POSSIBLE sepsis, we suggest a *time-limited course of rapid investigation* and if concern for infection persists:

- o Blood culture before IV antibiotics
- Broad spectrum IV antibiotics within **3 hours**
- Administer at least 30 mL/kg of balanced crystalloid within first 3 hours of resuscitation if evidence of hypoperfusion (tachycardia, low urine output, acute kidney injury, elevated lactate, etc.)

For adults with a LOW LIKELIHOOD of infection and NOT in shock, we suggest deferring antimicrobials while continuing to closely monitor the patient.

ADDITIONAL RECOMMENDATIONS

- Early investigations to determine infectious source (radiologic, surgical, other cultures i.e. CSF, joint aspiration) and early source control within 6-12 hours through appropriate consultation and using the least invasive technique.
- Consult ICU early (either locally or through the BC Patient Transfer Network) if you suspect the patient will need higher level of care.
- We suggest guiding resuscitation to decrease serum lactate in patients with elevated lactate level, over not using serum lactate.
- Lactate should be rechecked every 2-4 hours during resuscitation. An elevated lactate, or failure to clear lactate does not necessarily imply the patient needs IV fluid. Patients should be assessed for fluid responsiveness, need for vasopressors/inotropes or further imaging. We suggest using capillary refill time to guide resuscitation as an adjunct to other measures of perfusion.
- For adults with sepsis or septic shock who require ICU admission, we suggest admitting the patients to the ICU within 6 hours.

If hypotensive despite fluid bolus (30 mL/kg) we suggest:

- Initiate norepinephrine targeting mean arterial pressure (MAP) of 65 mmHg. We suggest starting
 norepinephrine peripherally (in or proximal to the antecubital fossa) to restore MAP rather than
 delaying initiation until a central venous access is secured. Peripheral access sites running vasopressors
 should be checked every hour. Local protocols for extravasation management should be established.
 Central access and intra-arterial monitoring should be obtained within 6 hours.
- For further assessment of fluid resuscitation, we suggest using dynamic measures over physical examination or static parameters alone.
- For adults unable to obtain a MAP greater than 65 mmHg with 15 ug/min or 0.25 ug/kg/min of norepinephrine we suggest adding vasopressin 0.03 units/min fixed dose (or 1.8 units/hr).
 Vasopressin should not be infused through peripheral IVs.
- For adults with septic shock and inadequate MAP despite norepinephrine and vasopressin, we suggest adding epinephrine. Norepinephrine and epinephrine may be infused through peripheral IVs for up to 6 hours.
- Using further hemodynamic assessment (such as assessing cardiac function) to determine the type of shock if the physical exam does not lead to a clear diagnosis.
- Using dobutamine and norepinephrine OR epinephrine as needed if evidence of sepsis induced myocardial suppression (determined by ECHO, low ScvO2 or physical exam). Continue to assess response.

- For adults with septic shock and an ongoing requirement for significant vasopressor therapy (greater than 4 hours or expected to be greater than 4 hours) we suggest using IV hydrocortisone at a dose of 50 mg IV q6h.
- For adults with sepsis or septic shock we suggest against using IV vitamin C.
- Consultation with critical care services or transfer to ICU (either locally or through BC Patient Transfer Network).

GUIDELINE REFERENCES

- 1. Arnold RC, Shapiro NI, Jones AE, et al. Multi-center study of early lactate clearance as a determinant of survival in patients with presumed sepsis. *Shock*. 2009;32(1):35-39.
- Evans, Laura; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021, Critical Care Medicine: November 2021 - Volume 49 – Issue 11 - p 1063-1143doi: 10.1097/CCM.00000000005337
- 3. Gacoulin A, Tulzo Y, Lavoue S, et al. Severe pneumonia due to Legionella pneumonphilia: Prognostic factors, impact on delayed appropriate antimicrobial therapy. *Intensive Care Med.* 2002; 28:686-691.
- 4. Gaieski DF, Mikkelsen ME, Band RA, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. *Crit Care Med.* 2010; 38(4):1045-1053.
- Gorski, Lisa A. MS, RN, HHCNS-BC, CRNI[®], FAAN; et al. Infusion Therapy Standards of Practice, 8th Edition, Journal of Infusion Nursing: January/February 2021 - 44(1S) p S1-S224 doi: 10.1097/NAN.00000000000396
- 6. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. *Crit Care Med.* 2006; 34:1589–1596.
- Loubani OM, Green RS (2015) A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J CritCare 30(3):653e9-17 doi: 10.1016/j.jcrc.2015.01.014
- 8. Micek ST, Roubinian N, Heuring T, et al. Before-after study of a standardized hospital order set for the management of septic shock. *Crit Care Med.* 2006; 34:2707–2713.
- 9. Mikkelsen ME, Gaieski DF, Goyal M, et al. Factors associated with nonadherence with early goal-directed therapy in the ED. *Chest.* 2010; 138(3): 551-558.
- 10. Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. *Antimicrob Agents Chemother*. 2005; 49:3640–3645.
- 11. Nguyen H, Rivers E, Knoblich B, et al. Early lactate clearance is associated with improved out- come in severe sepsis and septic shock. *Crit Care Med*. 2004; 32(8):1637-1642.
- 12. Rhodes A, Evans L, Alhazzani W, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2016. *Crit Care Med* 2017; 45(3).
- 13. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. *N Engl J Med* 2001: 345:1368-1377.
- 14. Singer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8): 801-810.

- 15. Surviving Sepsis Campaign. Surviving Sepsis Campaign: Updated Bundles in Response to New Evidence. www.survivingsepsis.org/bundles. Accessed 9 Feb. 2017.
- 16. Wang HE, Shapiro NI, Angus DC, et al. National estimates of severe sepsis in United States emergency departments. *Crit Care Med*. 2007; 35:1928–1936.
- 17. Weinstein MP, Reller LP, Murphy JR, et al. The clinical significance of positive blood cultures: A comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. *Rev Infect Dis*. 1983; 5:35–53.
- Freund Y, Lemachatti N, Krastinova E, et al. Prognostic accuracy of Sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA. 2017; 317(3):301-308.

ADDITIONAL REFERENCES

- 1. Bozza F, Carnevale R, Japiassu M, et al. Early Fluid Resuscitation in Sepsis: Evidence and Perspectives. *Shock*. 2010; 34: Supplement 1: 40-43.
- 2. El Sohl A, Akinnusi M, Alsawalha L, et al. Outcomes of Septic Shock in Older Adults After Implementation of the Sepsis "Bundle". *J Am Ger Soc.* 2008; 56:272-278.
- Funk D. & Kumar A. Antimicrobial Therapy for Life-threatening Infections: Speed is Life. *Crit Care Clin*. 2011; 27: 53–76.
- Jones A, Shapiro N, & Roshon M. Implementing Early Goal Directed Therapy in the Emergency Setting: The Challenges and Experiences of Translating Research Innovations into Clinical Reality in Academic and Community Settings. Acad Emerg Med. 2007; 14(11):1072-1078.
- 5. Jones A, Shapiro N, Trzeciak S, et al. Lactate Clearance Vs. Central Venous Oxygen Saturation as Goals for Early Sepsis Therapy: A randomized clinical trial. *JAMA*. 2010; 303(8):739-746.
- Khowaja, Asif Raza PhD, et al. The Return on Investment of a Province-Wide Quality Improvement Initiative for Reducing In-Hospital Sepsis Rates and Mortality in British Columbia, Canada, Critical Care Medicine: September 29, 2021 - Volume - Issue -doi: 10.1097/CCM.000000000005353Kumar A,
- 7. Zarychanski R, Light B, et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis. *Crit Care Med.* 2010; 38(9): 1773-1785.
- 8. Levy M, Dellinger R, Townsend S, et al. The Surviving Sepsis Campaign: Results of an international guidelinebased performance improvement program targeting severe sepsis. *Crit Care Med.* 2010; 38 (2):1-8.
- 9. Nee P. Critical Care in the Emergency Department: Severe Sepsis and Septic Shock. J *Emerg Med.* 2006; 23: 713-717.
- 10. Nguyen B, Oh J, Otero R, et al. Standardization of Severe Sepsis Management: A Survey of Methodologies in Academic and Community Settings. *J Emerg Med.* 2010; 38(2):122–132.

- 11. Otero R, Nguyen B, Huang D, et al. Early Goal Directed Therapy in Severe Sepsis and Septic Shock Revisited: Concepts, Controversies and Contemporary Findings. *Chest.* 2006; 130:1579-1595.
- 12. Rivers E. Point: Adherence to Early Goal Directed Therapy: Does it Really Matter? Yes. After a Decade, the Scientific Proof Speaks for Itself. *Chest.* 2010; 138:476-480
- 13. Rivers E. & Ahrens T. Improving Outcomes for Severe Sepsis and Septic Shock: Tools for Early Identification of At-Risk Patients and Treatment Protocol Implementation. *Crit Care Clin.* 2008; 23:S1–S47.
- 14. Shapiro N, Howell M, Talmor D, et al. Lactate as a Predictor of Mortality in Emergency Department Patients With Infection. *Anls Emerg Med*. 2005; 45(5): 524-528.
- 15. Sweet D, Jaswal D, Fu W, et al. Effect of an emergency department sepsis protocol on the care of septic patients admitted to the intensive care unit. *CJEM*. 2010; 12(5): 414-420.